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Expansion of Building-Like Complexes
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Abstract

Following Gromov, the coboundary expansion of building-like com-
plexes is studied. In particular, it is shown that for any n ≥ 1, there
exists a constant ǫ(n) > 0 such that for any 0 ≤ k < n the k-th
coboundary expansion constant of any n-dimensional spherical build-
ing is at least ǫ(n).

1 Introduction

Expander graphs have been a focus of intensive research in the last four
decades, with many applications in combinatorics and computer science as
well as pure mathematics (see [6, 10, 11]). In recent years a high dimen-
sional theory is emerging. There are several ways to extend the definition of
expanders from graphs to simplicial complexes (see [12] for a survey). Here
we will be concerned with the notion of ”coboundary expansion” that came
up independently in the work of Linial, Meshulam and Wallach [9, 15] on
homological connectivity of random complexes and in Gromov’s work [5] on
the topological overlap property. For an application of coboundary expan-
sion to property testing see [7]. The rich theory of expander graphs hints
that high dimensional expanders can also be useful. The goal of this paper is
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to show, following Gromov [5], that spherical buildings, and more generally,
”building-like complexes” (defined precisely below), are expanders.

We proceed with the formal definitions. Let X be a finite n-dimensional
pure simplicial complex. For k ≥ 0, let X(k) denote the k-dimensional
skeleton of X and let X(k) be the family of k-dimensional faces of X ,
fk(X) = |X(k)|. Define a positive weight function w = wX on the sim-
plices of X as follows. For σ ∈ X(k), let c(σ) = |{η ∈ X(n) : σ ⊂ η}| and
let

w(σ) =
c(σ)(

n+1
k+1

)
fn(X)

.

Note that
∑

σ∈X(k) w(σ) = 1 and if σ ∈ X(k) then
∑

{τ∈X(k+1):σ⊂τ}

w(τ) = (k + 2)w(σ).

All homology and cohomology groups referred to in the sequel are with F2

coefficients. Let Ck(X) be the space of F2-valued k-chains of X with the
boundary map ∂k : Ck(X) → Ck−1(X). Let Ck(X) denote the space of F2-
valued k-cochains of X with the coboundary map dk : C

k → Ck+1. As usual,
the spaces of k-cycles and k-cocycles are denoted by Zk(X) and Zk(X) and
the spaces of k-boundaries and k-coboundaries are denoted by Bk(X) and
Bk(X). Reduced k-dimensional homology and cohomology will be denoted
by H̃k(X) and H̃k(X). For φ ∈ Ck(X), let [φ] denote the image of φ in
Ck(X)/Bk(X). Let

‖φ‖ =
∑

{σ∈X(k):φ(σ)6=0}

w(σ)

and
‖[φ]‖ = min{‖φ+ dk−1ψ‖ : ψ ∈ Ck−1(X)}.

Definition 1.1. The k-th coboundary expansion constant of X is

hk(X) = min

{
‖dkφ‖

‖[φ]‖
: φ ∈ Ck(X)− Bk(X)

}
.

Remarks:

1. Note that hk(X) = 0 iff H̃k(X ;F2) 6= 0.
2. Let ∆n denote the n-simplex and let 0 ≤ k ≤ n − 1. In [15, 5] it was
shown that the k-th coboundary expansion of ∆n satisfies

hk(∆n) ≥
n+ 1

n− k
(1)
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with equality when n+ 1 is divisible by k + 2.
3. Let k < n and let σ ∈ X(k) be a k-simplex of minimal weight. Then
‖[1σ]‖ = w(σ) and therefore

hk(X) ≤
‖dk1σ‖

‖[1σ]‖
=

∑
{w(τ) : τ ∈ X(k + 1), σ ⊂ τ}

w(σ)
= k + 2. (2)

Equality in (2) is attained for X = ∆n and k = n− 1.
4. The normalization we use for the norm in Ck(X) and hence for the
definition of hk(X) takes into account the possibility that the k-faces of X
may not all have the same degrees. This is particularly relevant for spherical
buildings - see the example following Corollary 3.6.

In this note we are concerned with the expansion of certain building-like
complexes. Let G be a subgroup of Aut(X) and let S be a finite G-set. For
0 ≤ k ≤ n−1, let Fk = S×X(k) with a G-action given by g(s, τ) = (gs, gτ).
Let

B = {Bs,τ : −1 ≤ k < n, (s, τ) ∈ Fk}

be a family of subcomplexes of X such that τ ∈ Bs,τ ⊂ Bs,τ ′ for all s ∈ S
and τ ⊂ τ ′ ∈ X(n−1).

Definition 1.2. A building-like complex is a 4-tuple (X,S,G,B) as above
with the following properties:

(C1) G is transitive on X(n).

(C2) gBs,τ = Bgs,gτ for all g ∈ G and (s, τ) ∈ S ×X(n−1).

(C3) H̃i(Bs,τ) = 0 for all (s, τ) ∈ Fk and −1 ≤ i ≤ k < n.

Examples of building-like complexes include basis-transitive matroid com-
plexes and spherical buildings - see Section 3. Following Gromov [5], we give
a lower bound on the expansion of building-like complexes. For a simplex
η ∈ X , let Gη denote the orbit of η under G. For 0 ≤ k ≤ n− 1, let

ak = ak(X,S,G,B) = max{|Gη ∩Bs,τ (k + 1)| : η ∈ X(k + 1), (s, τ) ∈ Fk}.

Theorem 1.3. Let (X,S,G,B) be an n-dimensional building-like complex.
Then for 0 ≤ k ≤ n− 1,

hk(X) ≥

((
n + 1

k + 2

)
ak

)−1

. (3)
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The proof of Theorem 1.3 is given in Section 2. In Section 3 we use The-
orem 1.3 to derive expansion bounds for basis-transitive matroid complexes
and for spherical buildings. In Section 4 we discuss applications to topologi-
cal overlapping and to property testing. We conclude in Section 5 with some
questions and comments.

2 A Lower Bound on Expansion

Let (X,S,G,B) be a building-like complex. For a k-simplex τ = (v0, . . . , vk)
and 0 ≤ i ≤ k, let τi = (v0, . . . , vi−1, vi+1, . . . , vk). The proof of Theorem 1.3
depends on the following homological filling property.

Proposition 2.1. There exists a family of chains

C = {cs,τ ∈ Ck+1(Bs,τ) : −1 ≤ k ≤ n− 1 , (s, τ) ∈ Fk}

such that

∂k+1cs,τ = τ +
k∑

i=0

cs,τi. (4)

Proof: We define the cs,τ ’s by induction on k. First let k = −1 and let ∗
be the empty simplex. For each s ∈ S, choose an arbitrary vertex vs ∈ Bs,∗

and let cs,∗ = vs. For the induction step, let 0 ≤ k ≤ n − 1 and suppose
that the cs,τ ’s have been defined for all (s, τ) ∈ ∪j<kFj and that the family
{cs,τ : (s, τ) ∈ Fj , −1 ≤ j < k} satisfies (4). Let (s, τ) ∈ Fk. Then

z = τ +

k∑

i=0

cs,τi ∈ Ck(Bs,τ ) +

k∑

i=0

Ck(Bs,τi) ⊂ Ck(Bs,τ).

We claim that z ∈ Zk(Bs,τ ). Indeed

∂kz = ∂kτ +

k∑

i=0

∂kcs,τi

=

k∑

i=0

τi +

k∑

i=0

(τi +
∑

j

cs,τij )

=
∑

i,j

cs,τij = 0.
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The last equality follows from the fact that each cs,τij appears twice. As

H̃k(Bs,τ ) = 0, it follows that there exists a (k+1)-chain cs,τ ∈ Ck+1(Bs,τ ) such
that ∂k+1cs,τ = z. It is clear that the family {cs,τ : (s, τ) ∈ Fj , −1 ≤ j ≤ k}
satisfies (4).

�

For 0 ≤ k ≤ n and s ∈ S, define the contraction operator

ιs : C
k(X) → Ck−1(X)

as follows. For α ∈ Ck(X) and τ ∈ X(k − 1) let

ιsα(τ) = α(cs,τ).

Claim 2.2. For 0 ≤ k ≤ n− 1 and α ∈ Ck(X)

dk−1ιsα+ ιsdkα = α. (5)

Proof: Let τ ∈ X(k). Then

dk−1ιsα(τ) + ιsdkα(τ) = ιsα(∂kτ) + dkα(cs,τ)

=
k∑

i=0

ιsα(τi) + α(∂k+1cs,τ)

=

k∑

i=0

α(cs,τi) + α(τ +

k∑

i=0

cs,τi)

=

k∑

i=0

α(cs,τi) + α(τ) +

k∑

i=0

α(cs,τi) = α(τ).

�

Remark: If α is a k-cocycle, then (5) gives a way of representing α as a
k-cobounday, i.e. α = dk−1ιsα. For a general α ∈ Ck(X), it provides a
another representative of [α] ∈ Ck(X)/Bk(X).

Proof of Theorem 1.3. Let 0 ≤ k ≤ n − 1 and α ∈ Ck(X). Fix s ∈ S
then by Claim 2.2, ιsdkα = α− dk−1ιsα. Therefore

‖[α]‖ ≤ ‖ιsdkα‖. (6)
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For η ∈ X(k + 1), let

λ(η) =
1

|S| · w(η)

∑

{(s,τ)∈Fk : η∈supp(cs,τ )}

w(τ)

and

λ̃(η) =
1

|S| · w(η)

∑

{(s,τ)∈Fk : η∈Bs,τ }

w(τ).

Let
θk = θk(X, C) = max

η∈X(k+1)
λ(η). (7)

Proposition 2.3. For 0 ≤ k ≤ n− 1,

hk(X) ≥
1

θk
. (8)

Proof: Let α ∈ Ck(X). Summing (6) over all s ∈ S we obtain

|S| · ‖[α]‖ ≤
∑

s∈S

‖ιsdkα‖

=
∑

s∈S

∑
{w(τ) : τ ∈ X(k) , ιsdkα(τ) 6= 0}

=
∑

s∈S

∑
{w(τ) : τ ∈ X(k) , dkα(cs,τ) 6= 0}

≤
∑

s∈S

∑
{w(τ) : τ ∈ X(k) , supp(dkα) ∩ supp(cs,τ) 6= ∅}

≤
∑

η∈supp(dkα)

∑

s∈S

∑
{w(τ) : τ ∈ X(k), η ∈ supp(cs,τ)}

=
∑

η∈supp(dkα)

∑

{(s,τ)∈Fk : η∈supp(cs,τ )}

w(τ)

=
∑

η∈supp(dkα)

|S| · w(η)λ(η)

≤ |S| · θk
∑

η∈supp(dkα)

w(η)

= |S| · θk · ‖dkα‖.

�
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To complete the proof of Theorem 1.3, it thus suffices to show the following:

Claim 2.4.

θk ≤

(
n + 1

k + 2

)
ak. (9)

Proof: Fix an η ∈ X(k + 1). By the homogeneity condition (C2), λ̃(η) =
λ̃(gη) for all g ∈ G. The transitivity assumption (C1) implies that

fn(X) ≤ (G : stabG(η))c(η)

and hence

|stabG(η)| ≤
|G| · c(η)

fn(X)
= |G| ·

(
n + 1

k + 2

)
w(η).

Therefore

|G|λ(η) ≤ |G|λ̃(η) =
∑

g∈G

λ̃(gη)

=
∑

g∈G

1

|S| · w(gη)

∑

{(s,τ)∈Fk :gη∈Bs,τ }

w(τ)

=
1

|S| · w(η)

∑

(s,τ)∈Fk

w(τ)|{g ∈ G : gη ∈ Bs,τ}|

≤
1

|S| · w(η)

∑

(s,τ)∈Fk

w(τ) · |stabG(η)| · ak

=
ak · |stabG(η)|

w(η)
·
1

|S|

∑

(s,τ)∈Fk

w(τ)

=
ak · |stabG(η)|

w(η)

≤ |G| ·

(
n+ 1

k + 2

)
· ak.

�

3 Building-Like Complexes

In this section we give applications of Theorem 1.3 to two families of building-
like complexes.
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3.1 Basis-Transitive Matroidal Complexes

Let M be a matroid on the vertex set V with rank function ρ and let n =
ρ(V )− 1. We identify M with its n-dimensional matroidal complex, namely
the simplicial complex on V whose simplices are the independent sets of the
matroid. Matroidal complexes are characterized by the property that their
induced subcomplexes M [S] are pure for every S ⊂ V . It is well known (see
e.g. Theorem 7.8.1 in [2]) that H̃i(M) = 0 for all i < dimM = n.

A matroid M is basis-transitive if its automorphism group Aut(M) is
transitive on the bases (i.e. maximal faces) of M . One such example is
the independence matroid of a vector space. For a classification of basis-
transitive matroids see [3] and the references therein. Let M be a basis-
transitive matroid of rank n + 1 and let G be a subgroup of Aut(M) such
that G is transitive on the facets. Let S = M(n) be the G-set of all n-faces
of M . For (s, τ) ∈ S ×M(k) = Fk let Bs,τ =M [s ∪ τ ]. Then gBs,τ = Bgσ,gτ

for all g ∈ G. As ρ(s∪τ) = n+1, it follows that H̃i(Bs,τ) = H̃i(M [s∪τ ]) = 0
for all i < n. Letting

B = {Bs,τ : −1 ≤ k < n, (s, τ) ∈ Fk}

it follows that (M,S,G,B) is an n-dimensional building-like complex. Now

ak = ak(M,S,G,B) ≤ max{fk+1(Bs,τ ) : (s, τ) ∈ Fk} ≤

(
n + k + 2

k + 2

)
.

Writing ǫ1(n, k) =
((

n+1
k+2

)(
n+k+2
k+2

))−1
, Theorem 1.3 implies the following

Corollary 3.1. If M is basis-transitive matroid of rank n + 1 then for all
0 ≤ k ≤ n− 1,

hk(M) ≥ ǫ1(n, k).

Remark: The bound given in Corollary 3.1 is in general weak and can some-
times be significantly improved for specific classes of basis-transitive matroids
by explicitly constructing a family of chains {cs,τ} satisfying (4) and then us-
ing Proposition 2.3 directly. We illustrate this by the following example.

The Partition Matroid

Let V1, . . . , Vn+1 be n+1 disjoint sets such that |Vi| = m and let X = Xn,m be
the partition matroid with respect to V1, . . . , Vn+1, i.e. σ ∈ Xn,m iff |σ∩Vi| ≤
1 for all 1 ≤ i ≤ n+1. Fix a vector v = (v1, . . . , vn+1) ∈ V = V1×· · ·×Vn+1.

8



For an integer ℓ ≥ 1 let [ℓ] = {1, . . . , ℓ}. Let −1 ≤ k ≤ n − 1 and let
τ = {ui : i ∈ I} ∈ Xn,m(k) where ui ∈ Vi and I ∈

(
[n+1]
k+1

)
. Define

j = j(τ) = max{ℓ : [ℓ] ⊂ I}

and let

τ ′ = {ui : i ∈ [j]} ∈ Xn,m(j − 1) , τ ′′ = {ui : i ∈ I − [j]} ∈ Xn,m(k − j).

For T ⊂ [j], let

σT = {vt : t ∈ T} ∪ {ut : t ∈ [j]− T}

and let zτ =
∑

T⊂[j] σT . If vi 6= ui for all i ∈ [j], then zτ is the fundamental

cycle of the octahedral (j − 1)-sphere {u1, v1} ∗ · · · ∗ {uj, vj}. Otherwise
zτ = 0. Define c̃τ ∈ Ck+1(Xn,m) as the concatination zτvj+1τ

′′. For i ∈ I, let
τi = τ − {ui}.

Claim 3.2.

∂k+1c̃τ = τ +
∑

i∈I

c̃τi.

Proof: Note that for any i ∈ [j],
∑

{T⊂[j]:maxT=i}

σT τ
′′ = c̃τi.

As ∂j−1zτ = 0 it follows that

∂k+1c̃τ = ∂k+1(zτvj+1τ
′′) = zτ∂k+1−j(vj+1τ

′′)

= zτ τ
′′ +

∑

i∈I−[j]

zτvj+1(τ
′′ − {ui})

= zτ τ
′′ +

∑

i∈I−[j]

c̃τi

= τ ′τ ′′ +
∑

∅6=T⊂[j]

σT τ
′′ +

∑

i∈I−[j]

c̃τi

= τ +
∑

i∈[j]


 ∑

{T⊂[j]:maxT=i}

σT τ
′′


+

∑

i∈I−[j]

c̃τi

= τ +
∑

i∈[j]

c̃τi +
∑

i∈I−[j]

c̃τi

= τ +
∑

i∈I

c̃τi .

9
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Keeping the notation j = j(τ), we next note that

|supp(c̃τ )| =

{
2j if ut 6= vt for all t ∈ [j]
0 otherwise.

(10)

Therefore

∑

τ∈Xn,m(k)

|supp(c̃τ )| =
k+1∑

j=0

2j ·

(
(m− 1)j

(
n− j

k + 1− j

)
mk+1−j

)

= mk+1
k+1∑

j=0

(
2(m− 1)

m

)j (
n− j

n− k − 1

)
.

(11)

Let S = Aut(Xn,m) be the automorphism group of Xn,m. For s ∈ S and
τ ∈ Xn,m(k), let cs,τ = s−1c̃sτ . Claim 3.2 implies that the family

C = {cs,τ ∈ Ck+1(Bs,τ) : −1 ≤ k ≤ n− 1 , (s, τ) ∈ S ×Xn,m(k)}

satisfies (4). We proceed to compute θk = θk(Xn,m, C) as defined in (7). First
note that cs,s0τ = s0css0,τ for all s0, s ∈ S and τ ∈ Xn,m(k). This, together
with the transitivity of S on Xn,m(k) and (11), imply that for all s ∈ S

∑

τ∈Xn,m(k)

|supp(cs,τ )| =
∑

τ∈Xn,m(k)

|supp(cidentity,τ )| =
∑

τ∈Xn,m(k)

|supp(c̃τ )|

= mk+1

k+1∑

j=0

(
2(m− 1)

m

)j (
n− j

n− k − 1

)
.

(12)

The transitivity of S on Xn,m(k + 1) implies that λ(η) is independent of
η ∈ Xn,m(k + 1). As

λ(η) =
1

|S| · w(η)

∑

{(s,τ)∈Fk : η∈supp(cs,τ )}

w(τ)

=
fk+1(Xn,m)

|S|fk(Xn,m)
|{(s, τ) ∈ Fk : η ∈ supp(cs,τ )}|,

10



it follows by (11) that

θk =
1

fk+1(Xn,m)

∑

η∈Xn,m(k+1)

λ(η)

=
1

|S|fk(Xn,m)

∑

s∈S

∑

τ∈Fk

|supp(cs,τ)|

=
1(

n+1
k+1

)
k+1∑

j=0

(
2(m− 1)

m

)j (
n− j

n− k − 1

)
.

(13)

Proposition 2.3 and (13) imply the following:

Theorem 3.3. For 0 ≤ k ≤ n− 1,

hk(Xn,m) ≥

(
n+1
k+1

)
∑k+1

j=0(
2(m−1)

m
)j
(

n−j

n−k−1

) . (14)

We note some special cases of Theorem 3.3.
(i) Let m = 1. Then Xn,1 = ∆n and

hk(Xn,1) ≥

(
n+1
k+1

)
(

n

k+1

) =
n+ 1

n− k

thereby recovering the bound (1).
(ii) Let m = 2. Then Xn,2 is the octahedral n-sphere and

hk(Xn,2) ≥

(
n+1
k+1

)
∑k+1

j=0

(
n−j

n−k−1

) =

(
n+1
k+1

)
(
n+1
n−k

) = 1.

This coincides with the result of Proposition 5.5 in [4].
(iii) For general m and k = n− 1,

hn−1(Xn,m) ≥
n+ 1

∑n

j=0(
2(m−1)

m
)j
.

This is a small improvement over the bound hn−1(Xn,m) ≥ n+1
2n+1−1

given in
Proposition 5.7 in [4].

We conclude this section with an upper bound on the expansion of Xn,m.
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Claim 3.4. Let 0 ≤ k ≤ n− 1. If (k + 2)|m then hk(Xn,m) ≤ 1.

Proof: Let Vi =
⋃k+2

j=1 Vij where |Vij | = m
k+2

. Let α ∈ Ck(Xn,m) be the
indicator function of the following set of k-simplices:

⋃

1≤i1<···<ik+1≤n+1

⋃

π∈Sk+1

Vi1,π(1) × · · · × Vik+1,π(k+1).

Then

|supp(α)| =

(
n+ 1

k + 1

)(
m

k + 2

)k+1

(k + 1)!.

The support of the coboundary of α is

B = supp(dkα) =
⋃

1≤i1<···<ik+2≤n+1

⋃

π∈Sk+2

Vi1,π(1) × · · · × Vik+2,π(k+2)

and so,

|B| =

(
n+ 1

k + 2

)(
m

k + 2

)k+2

(k + 2)!.

We claim that ‖[α]‖ = ‖α‖. Indeed, suppose that α′ = α + dk−1ψ where
ψ ∈ Ck−1(Xn,m). Let

C = {(σ, τ) ∈ supp(α′)×B : σ ⊂ τ}.

As B = supp(dkα) = supp(dkα
′), it follows that |C| ≥ |B|. On the other

hand, any τ ∈ Xn,m(k) is contained in at most (n− k) · m
k+2

simplices of B.
It follows that

|B| ≤ |C| ≤ |supp(α′)| · (n− k) ·
m

k + 2
.

Therefore

|supp(α′)| ≥ |B|
k + 2

m(n− k)
= |supp(α)|.

It follows that

‖dkα‖

‖[α]‖
=
fk(Xn,m) · |supp(dkα)|

fk+1(Xn,m) · |supp(α)|

=

(
n+1
k+1

)
mk+1 ·

(
n+1
k+2

) (
m
k+2

)k+2
(k + 2)!

(
n+1
k+2

)
mk+2 ·

(
n+1
k+1

) (
m
k+2

)k+1
(k + 1)!

= 1.

�
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3.2 Spherical Buildings

In this section we use Theorem 3 to recover Gromov’s [5] uniform lower
bound on the expansion of spherical buildings of rank n + 1. Our notation
and terminology follows [1]. Let G = 〈B,N〉 be a finite group with a BN-pair
of rank n + 1 and let (W,S) be the associated Coxeter system. Here W =
N/(B∩N) is the Weyl group andS is the distinguished set of n+1 generators
of W . For J ⊂ S, let WJ = 〈J〉 and let GJ = BWJB be the associated
standard parabolic group. For s ∈ S, let (s) = S − {s}. The spherical
building ∆ = ∆(G;B,N) is the n-dimensional pure simplicial complex on
the vertex set V =

⋃
s∈SG/G(s) whose maximal faces, called chambers, are

Cg = {gG(s) : s ∈ S}. Two chambers are adjacent if their intersection is
(n − 1)-dimensional. For g ∈ G, let Vg = {gwG(s) : w ∈ W, s ∈ S}. The
apartment Ag is the induced complex ∆[Vg]. It is a simplicial n-sphere whose
chambers are {Cgw}w∈W , hence fn(Ag) = |W |. Any two simplices σ, τ ∈ ∆
are contained in some apartment Ag.

Claim 3.5. Let g1, . . . , gk ∈ G and let Y =
⋂k

i=1Agi. If dim Y = n then
H̃i(Y ) = 0 for all i ≤ n− 1.

Proof: It is convenient to identify the complex ∆ with its geometric realiza-
tion. Recall the following:

• A gallery connecting two simplices σ and τ is a sequence C0, C1, . . . , Cr

of adjacent chambers so that σ is a face of C0 and τ is a face of Cr.
The gallery is called minimal if it has minimal length among all possible
galleries connecting σ and τ .

• An apartment A which contains two simplices contains also every min-
imal gallery connecting them.

• Let x and y be two points in the geometric realization of ∆. Let A be
an apartment containing x and y. Consider the sequence of consecutive
chambers visited by a minimal geodesic on the sphere A connecting x
and y. This sequence forms a minimal gallery and hence is contained
in any apartment containing both x and y.

Fix some x ∈ Y =
⋂k

i=1Agi . If Y contains a point antipodal to x in some
apartment A0 containing x then it follows from the above that Y contains the
apartment A0 and hence it follows that Y = A0 which is an n-dimensional

13



sphere and the claim holds. Otherwise it follows that for each y ∈ Y there
is a unique geodesic arc connecting x to y in all the apartments containing
x and y and in particular this geodesic arc is contained in Y . This implies
that Y is contractible.

�

Let S = ∆(n) be the set of chambers of ∆. For (s, τ) ∈ S ×∆(k) = Fk, let
Bs,τ = ∩{Ag : s, τ ∈ Ag}. Letting

B = {Bs,τ : −1 ≤ k < n, (s, τ) ∈ Fk}

it follows from Claim 3.5 that (∆, S, G,B) satisfies conditions (C1), (C2) and
(C3) of Definition 1.2. Clearly

ak = ak(∆, S, G,B) ≤ fk+1(Ag) ≤

(
n+ 1

k + 2

)
fn(Ag) =

(
n+ 1

k + 2

)
|W |.

Let ωn be the maximal size of a Weyl group of rank n+ 1 and let

ǫ2(n, k) =

((
n+ 1

k + 2

)2

ωn

)−1

.

Theorem 1.3 then implies

Corollary 3.6. If G = 〈B,N〉 is a finite group with BN-pair of rank n+ 1,
then for all 0 ≤ k ≤ n− 1

hk(∆(G;B,N)) ≥ ǫ2(n, k).

Example: Let G = GLn+2(Fq) = 〈B,N〉 where B is the group of upper
diagonal matrices and N is the group of monomial matrices. The Weyl
group of G is the symmetric group W = Sn+2. The n-dimensional spherical
building ∆ = ∆(G;B,N), denoted by An+1(Fq), is isomorphic to the order
complex of all nontrivial linear subspaces of Fn+2

q . Corollary 3.6 implies that
for 0 ≤ k ≤ n− 1,

hk (An+1(Fq)) ≥

((
n+ 1

k + 2

)2

(n+ 2)!

)−1

. (15)
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In particular

hn−1 (An+1(Fq)) ≥
1

(n+ 2)!
. (16)

Remark: The uniform lower bound (15) on the expansion of An+1(Fq) de-
pends on the particular normalization used in the definition of the norm in
Ck(X). Indeed, (15) fails to hold if the weight of a k-simplex is simply taken
as 1

fk(X)
. For example, let k = 0 and fix an n such that n+ 2 be divisible by

12. If U is an n+2
2
-dimensional subspace of Fn+2

q , then the degree of U in the
underlying graph G of An+1(Fq) is at most

2f0(An
2
(Fq)) = q

(n+2)2

16
(1+o(1)).

This is much smaller than

f1(An+1(Fq))

f0(An+1(Fq))
=
q

(n+2)2

3
(1+o(1))

q
(n+2)2

4
(1+o(1))

= q
(n+2)2

12
(1+o(1)).

It follows that the 1-dimensional skeleton of An+1(Fq) is not an expander if
one uses the normalization giving the same weight to all i-simplices.

4 Applications

Lower bounds on coboundary expansion give rise to applications in two di-
rections: topological overlapping and property testing.

4.1 Topological Overlapping

Let X be a finite n-dimensional pure simplicial complex and let M be an
n-dimensional Z2-manifold. For a continuous map f : X → M and a point
p ∈ M , let

γf(p) = |{σ ∈ X(n) : p ∈ f(σ)}|.

The following result is due to Gromov [5]. See also [14] for a detailed exposi-

tion (including some improved constants) for the caseM = Rn andX = ∆
(n)
N .

Theorem 4.1 ([5]). For any ǫ > 0 there exists a δ = δ(M, ǫ) > 0 such that
if hk(X) ≥ ǫ for all 0 ≤ k ≤ n− 1, then there exists a point p ∈M such that
γf(p) ≥ δfn(X).
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Let (X,S,G,B) be an n-dimensional building-like complex and let

a(X,S,G,B) = max
0≤k≤n−1

ak(X,S,G,B).

The following consequence of Theorem 1.3 was already noted by Gromov
(section 2.13 in [5]) when X is a spherical building or a partition matroid.

Corollary 4.2. For any 0 < c and an n-dimensional Z2-manifold M , there
exists a constant δ = δ(c,M) > 0 such that if a(X,S,G,B) ≤ c, then for
any continuous map f : X → M there exists a point p ∈ M such that
γf(p) ≥ δfn(X).

4.2 Property Testing

Definition 4.3. Let A be a finite set, and let dist(∗, ∗) be a metric on Am.
Let Wm a subset of Am and Pm a subset of Wm. Let ǫ > 0 and q ∈ N be fixed.
We say that the membership of α ∈ Pm (given α ∈ Wm) is (q, ǫ)-testable, if
there exists a randomized algorithm which queries only q (independent of m)
coordinates of α and answers ”yes” if α ∈ Pm, while it answers ”no” with
probability at least ǫ · dist(α, Pm).

In [7], it was observed that coboundary expansion implies that the sub-
space of coboundaries is testable within the subspace of cochains. The dis-
tance function dealt with there was the Hamming distance, but the same
applies to the norm used the this paper, provided the algorithm chooses a
face with probability equal to its norm. Theorem 1.3 therefore implies the
following.

Corollary 4.4. For any 0 < c and k < n there exist an ǫ = ǫ(c, k, n) > 0 such
that if an n-dimensional building-like complex satisfies ak(X,S,G,B) ≤ c,
then checking whether a k-cochain α is a k-coboundary is (k + 2, ǫ)-testable.

5 Concluding Remarks

We mention some problems related to the results of this paper.

1. It would be interesting to improve the bounds given in Theorem 1.3
and its corollaries. One concrete question is the following. The 1-
dimensional building A2(Fq) is the points vs. lines graph of the De-
sarguian projective plane of order q. It is known that the normalized

16



Cheeger constant of this graph satisfies h0(A2(Fq)) = 1−o(1) as q → ∞.
It seems likely that for n ≥ 2 the bound (16) can similarly be improved.

Conjecture 5.1. For fixed n and q → ∞

hn−1 (An+1(Fq)) = 1− o(1).

2. Let Ln be a geometric lattice of rank n with minimal element 0̂ and
maximal element 1̂. Let X(Ln) be the order complex of Ln − {0̂, 1̂}.
Then X(Ln) is (n− 2)-dimensional and H̃k(X(Ln)) = 0 for k ≤ n− 3
(see e.g. [2]). It would be interesting to find natural families {Ln} for
which hn−3(X(Ln)) remains uniformly bounded away from zero. For
example, is this the case when Ln is the lattice of partitions of [n+3]?
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